2023 年度 春・秋学期臨時試験						問題枚数	1/1
科目名		出題者氏名	受験クラス	学生証番号		氏名	
符号理論特論		山本宙	JNM, その他				
持込	不可	◇可の場合は,記入	開講曜日・時限	現在使用して	\+tt=i lot	採業	é
	可	関数電卓	オンデマンド	いる授業教室	遠隔授	. 美点	

注意事項:解答に変数が含まれない場合,整数または小数で表し,四捨五入して有効数字 3 桁まで求めよ. 分母,分子とも 整数の分数で表せる場合は既約分数で答えてもよい。

問 1 (各 5 点, 計 15 点)

シンボル誤り確率 0.3 の BSC で 3 回繰り返し符号を使って情報を送る場合,以下の問に答えよ.

- 1-a) 1ビットの情報を符号化した3ビットの送信語のうち,全てが正しく受信される確率を答えよ.
- 1-b) 1 ビットの情報を符号化した 3 ビットの送信語のうち,最初のビットのみ誤って受信される確率を答えよ.
- 1-c) 1ビットの情報を符号化した3ビットの送信語が正しく復号される確率を答えよ.

問 2 (20 点)

検査行列

$$H_2 = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

で記述される符号 C_2 の全符号語を書け.

問 3 (20 点)

$$G_3 = \left(\begin{array}{ccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{array}\right)$$

を生成行列とする符号 C_3 の検査行列を求めよ.

問 4 (各 5 点, 計 15 点)

$$G_4 = \left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array}\right)$$

を生成行列とする符号 C_4 について以下の間に答えよ.

- 4-a) 符号語を全て書け.
- 4-b) ベクトル 0100 による C_4 のコセットを書け.
- 4-c) C_4 の全てのコセットを書け.

問 5 (各 5 点,計 15 点) $H_5 = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ iggr e を検査行列とする符号 C_5 について, H_5 によるシンドローム復号を行う.以下の問に答えよ.

- 5-a) 復号に使用するすべてのコセットリーダと、それに対応するシンドロームを答えよ。コセットリーダの選び方には自 由度があるがどれでも良い。
- 5-b) 上で答えたコセットリーダーを使って (1010) を復号せよ.
- 5-c) 上で答えたコセットリーダーを使って (0111) を復号せよ.

問 6 (各 5 点, 計 15 点)

$$G_6 = (1 \ 1 \ 1)$$

を生成行列とする 3 回繰り返し符号 C_6 について以下の問に答えよ

- 6-a) パッキング半径を求めよ.
- 6-b) 被覆半径を求めよ.
- 6-c) C_6 が完全符号であることを示せ.